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function of bounded variation. When b = aa′, that is, when the generator of the SDE is the
divergence form operator L = 1

2
d
dx (a2 d

dx ), a result on non-existence of a strong solution and
non-pathwise uniqueness is given as well as a result which characterizes when a solution is
a semimartingale or not. We also consider extensions of the notion of Stratonovich integral.

Keywords. Stochastic differential equations, SDE, semimartingales, Dirichlet processes,
local times, Dirichlet forms, Stratonovich integral, divergence form, energy

AMS Subject Classifications. Primary: 60H10; Secondary: 60J35, 60J55, 31C25

1 Research partially supported by NSF grant DMS-9700721.
2 Research partially supported by NSA grant MDA904-99-1-0104.

1



1. Introduction.
Let Wt be a one-dimensional Brownian motion and consider the stochastic differential

equation (SDE)
dXt = a(Xt)dWt + b(Xt)dt. (1.1)

Here the stochastic integral is of Itô type. Our goal in this paper is to obtain pathwise
existence and uniqueness results for (1.1) for as wide a class of drift terms b as possible
when a is a Hölder continuous function of order 1

2 . In fact we allow b to be a generalized
function, rather than a function. Of course, it is necessary in this case to formulate what it
means to be a solution.

Given a Brownian motion W on a probability space, recall that a strong solution
to (1.1) is a continuous process X that is adapted to the filtration generated by W and
which solves (1.1). A weak solution of (1.1) is a couple (X, W ) on a filtered probability
space (Ω,F , {Ft}t≥0, P) such that Xt is adapted to Ft, Wt is an {Ft}t≥0-Brownian motion
(that is, Wt is Ft-measurable and for t > s, Wt −Ws is independent of Fs and has normal
distribution with zero mean and variance t − s), and (X, W ) satisfies (1.1). We say weak
uniqueness holds for (1.1) if whenever (X, W ), (X̃, W̃ ) are two weak solutions of (1.1) and
X0 has the same distribution as X̃0, then the process {Xt}t≥0 has the same law as the
process {X̃t}t≥0. Pathwise uniqueness is said to hold for (1.1) if whenever (X, W ), (X̃,W )
are two weak solutions of (1.1) with common Brownian motion W (relative to possibly
different filtrations) on a common probability space and with common initial value, then
P(Xt = X̃t for all t ≥ 0) = 1. We say that strong uniqueness holds for (1.1) if whenever X

and X̃ are two strong solutions of (1.1) relative to W with common initial condition X0,
then P(Xt = X̃t for all t ≥ 0) = 1. Clearly pathwise uniqueness implies strong uniqueness.
Yamada and Watanabe [20] showed that pathwise uniqueness implies weak uniqueness.

Stroock and Varadhan [18] proved that (1.1) has a unique weak solution if a2 is
bounded away from zero and infinity and b is bounded and measurable. It is known that
the existence of a weak solution does not imply the existence of a strong solution. A well-
known theorem of Yamada and Watanabe [20] says that if

(i) a is bounded and |a(x) − a(y)| ≤ ρ(|x − y|) for an increasing function ρ satisfying∫
0+

ρ−2(x)dx = ∞; and
(ii) b is a bounded Lipschitz function,

then there exists a strong solution to (1.1) and that solution is pathwise unique. (In their
paper [20], strong uniqueness is proved. But in fact, their proof also yields pathwise unique-
ness, see [12].) Barlow [1] showed that the above condition is nearly optimal for (1.1) when
b = 0.

Not as well-known is a result of Zvonkin [21] that says if a is bounded below away
from 0, is bounded above, and is Hölder continuous of order 1

2 , and b is only bounded
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and measurable, then strong existence and strong uniqueness holds for (1.1). In [21] the
coefficients can also depend on time. Zvonkin’s result was extended to the multidimensional
case by Veretennikov [19]. Furthermore in [13], LeGall obtained strong existence and strong
uniqueness for the SDE (1.1) where b(x)dx is replaced by a finite signed measure b(dx) and
a is a right continuous function that is bounded away from zero and is of bounded variation.
In earlier work [15] had shown weak existence of Markov solutons under the same hypotheses
as LeGall’s. For some recent work that is related to the subject of this paper see [4, 5, 6].

The first main result of this paper, in Section 2, concerns the case where we look at

dXt = a(Xt)dWt + (ba2)(Xt)dt, (1.2)

where a is in C1/2 and formally b may be written as the distributional derivative of a function
B that is Hölder continuous of order α for some α > 1

2 . Thus b might only be a generalized
function rather than a true function. In this case At =

∫ t

0
(ba2)(Xs)ds does not make sense

and a solution Xt might not be a semimartingale. For Xt to be a solution we require Xt to
be a Dirichlet process Xt = X0 +

∫ t

0
a(Xs)dWs + At, where At has zero energy (see Section

2 for a definition) and At is the limit in a suitable sense of
∫ t

0
B′

n(Xs)a2(Xs)ds; here the Bn

are smooth and converge appropriately to B.
In Section 3 we let b = a′a, so the solution to (1.1) corresponds to the diffusion

which has infinitesimal generator 1
2 (a2f ′)′, an elliptic operator in divergence form. This is a

special case of the situation of Section 2, but not surprisingly more can be said here. Under
a condition that is satisfied if a is Hölder continuous of order 1

2 , we construct a symmetric
diffusion that is a strong solution to (1.1) and prove pathwise uniqueness in a stronger
sense than in Section 2. We also show that for any α ∈ (0, 1/2), there is an α-Hölder
continuous function a that is bounded away from zero and infinity such that (1.1) has no
strong solution nor does pathwise uniqueness hold. We also characterize when the solution
is a semimartingale or not.

In Section 4 we consider the case where b = 1
2a′a so that (1.1) formally becomes

dXt = a(Xt) ◦ dWt, (1.4)

where the stochastic integral is of Stratonovich type. We give an interpretation to this
SDE and prove strong existence under the assumption that a is positive, bounded, and
continuous.

Finally in section 5, we look at the Stratonovich SDE (1.4) from another point of
view. We prove strong existence and pathwise uniqueness under this new interpretation,
when a(x) is a measurable function on R that is bounded above and bounded below away
from zero.
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Let us indicate the idea behind our method by considering (1.1) where b is a bounded
continuous function. Let s(x) be the scale function for the operator Lf(x) = 1

2a(x)2f ′′(x)+
b(x)f ′(x), so that Ls = 0. In fact, one can take the scale function to be

s(x) = c0

∫ x

0

exp
(
−

∫ y

0

2b(r)
a2(r)

dr
)
dy, (1.5)

where c0 > 0 is a constant. If Xt is a solution to (1.1), then by Itô’s formula Yt = s(Xt) is a
solution to dYt = ã(Yt)dWt, where ã(y) = (as′)(s−1(y)). If one can show that ã satisfies the
Yamada-Watanabe condition, then the paths of Yt are uniquely determined, and because s

is one-to-one, those of Xt are as well.

Throughout Wt will denote a Brownian motion. Stochastic integrals
∫ t

0
Hs−dWs

are of Itô type, while Stratonovich integrals are written
∫ t

0
Hs− ◦ dWs. The letter c with

subscripts will denote a positive finite constant whose exact value in unimportant. The Cα

norm of f is

‖f‖Cα = sup
x
|f(x)|+ sup

x6=y

|f(x)− f(y)|
|x− y|α

.

Acknowledgement. We thank M. P. Qian for helpful discussions on Stratonovich SDE.
We are grateful to an anonymous referee for very helpful suggestions, especially for providing
a simple proof of Theorem 4.1.

2. Dirichlet processes.
In this section we consider the SDE

dXt = a(Xt)dWt + dAt, X0 = x0, (2.1)

where At is a process of zero energy. Formally we consider At as

At =
∫ t

0

b(Xs)a2(Xs)ds,

where b is the distributional derivative of a Hölder function B. More precisely, we define a
solution to (2.1) as follows.

Define the energy of a right continuous process At to be

lim
δ→0

sup
{Πt: mesh(Πt)<δ}

E
n−1∑
i=0

|Ati+1 −Ati
|2,

where Πt = {t0, t1, . . . , tn} denotes a partition of [0, t]. A right continuous process X is said
to be a Dirichlet process if it has a decomposition

Xt = X0 + Mt + At, t ≥ 0,
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where Mt is a local martingale and At is a continuous process having zero energy. Clearly
such a decomposition is unique for a Dirichlet process.

We define

Hp,ζ
t (A) = sup

r 6=s, r,s≤t

E |As −Ar|p

|s− r|ζ
.

Hp,ζ
t is a type of Hölder semi-norm.

Definition 2.1. Let γ > 0, p > 1, ζ > 1, and B ∈ Cγ . We say that Xt is a solution to (2.1)

with starting point x0 if

(i) Xt = x0 +
∫ t

0
a(Xs)dWs + At, where At is a continuous process having zero energy;

(ii) whenever Bn are C2 functions converging to B uniformly on R with supn ‖Bn‖Cγ <

∞, then An
t =

∫ t

0
B′

n(Xs)a2(Xs)ds converges to At uniformly over bounded time

intervals in probability;

(iii) whenever Bn are C2 functions converging to B uniformly on R with supn ‖Bn‖Cγ <

∞, we have supnH
p,ζ
t (An) < ∞ for each t.

When we want to emphasize the values of p and ζ, we will call Xt a (p, ζ)-solution.

Throughout this section we suppose that

a ∈ C1/2, γ ∈ ( 1
2 , 1), p ∈

( 2
1 + γ

,
2

2− γ

)
.

We show there exists a strong solution to (2.1) and the solution is pathwise unique.

Our first step is to give a candidate for a solution. Motivated by (1.2), define the func-
tion s by s(x) =

∫ x

0
e−2B(y)dy. Note s′ > 0 and s is a Lipschitz function. For typographical

convenience we will write σ for s−1.
Let

ã(x) = (s′a) ◦ σ(x).

Since B ∈ Cγ with γ > 1
2 , then ã ∈ C1/2. Let Yt solve

dYt = ã(Yt)dWt with Y0 = s(x0), (2.2)

and
Xt = σ(Yt). (2.3)

Proposition 2.2. The process Xt constructed above is a Dirichlet process with X0 = x0

whose martingale part is
∫ t

0
a(Xs)dWs. The process Xt is measurable with respect to the

σ-fields of W .

Proof. Since ã ∈ C1/2, we know from [20] that there is a unique pathwise solution to the
SDE (2.2) and that Yt is measurable with respect to the σ-fields of W . Therefore Xt is also
measurable with respect to the σ-fields of W with X0 = σ(s(x0)) = x0.
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We next show X is a Dirichlet process having the advertised decomposition. First we
examine the martingale term. Let gn be a sequence of C2 functions on R with gn(0) = σ(0)
so that g′n converges uniformly to σ′ as n →∞ with supn ‖g′n‖Cγ < ∞. By Itô’s formula,

d[gn(Yt)] = g′n(Yt)ã(Yt)dWt + 1
2g′′n(Yt)ã2(Yt)dt.

Since Xt = σ(Yt), then Yt = s(Xt), and we can rewrite the above as

gn ◦ s(Xt)− gn ◦ s(x0) =
∫ t

0

(g′nã) ◦ s(Xt)dWt + 1
2

∫ t

0

(g′′nã2) ◦ s(Xt)dt. (2.4)

Let n →∞. Since g′n → σ′ and gn(0) = σ(0), then gn → σ and so the left hand side of (2.4)
converges (uniformly) to Xt − x0. Also

(g′nã) ◦ s(x) = g′n(s(x))ã(s(x)) = g′n(s(x))s′(x)a(x) → a(x),

so the stochastic integral term in (2.4) converges to
∫ t

0
a(Xs)dWs (uniformly on bounded

intervals) in probability.
Since the first three terms in (2.4) converge, then the last term must also converge

in probability, say to At. It remains to show that At has zero energy. We can write

gn(y)− gn(x) =
∫ y

x

g′n(z)dz = g′n(x)(y − x) +
∫ y

x

[g′n(z)− g′n(x)]dz.

Since c1 = supn ‖g′n‖Cγ < ∞, the last term is less than c1|y − x|1+γ . We then have

|gn(Yt)− gn(Ys)− g′n(Ys)(Yt − Ys)| ≤ c1|Yt − Ys|1+γ . (2.5)

We also have

g′n(Ys)(Yt − Ys)−
∫ t

s

g′n(Yr)dYr =
∫ t

s

[g′n(Ys)− g′n(Yr)]dYr. (2.6)

Write An
t for the last term in (2.4). Since Yt is a martingale with d〈Y 〉t/dt = ã2(Yt), which

is bounded, and

An
t −An

s = gn(Yt)− gn(Ys)−
∫ t

s

g′n(Yr)dYr,

then by the Burkholder-Davis-Gundy inequality,

E (An
t −An

s )2 ≤ c2E |Yt − Ys|2+2γ + c2E
∫ t

s

[g′n(Ys)− g′n(Yr)]2ã2(Yr)dr

≤ c3|t− s|1+γ + c3(t− s)E sup
r≤s≤t

|Ys − Yr|2γ

≤ c4|t− s|1+γ .
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Using Fatou’s lemma,

E
∑

(Ati+1 −Ati
)2 ≤ c4

∑
|ti+1 − ti|1+γ .

This tends to zero as the mesh of the partition goes to 0.

Before proceeding to show that the Xt defined in (2.3) is actually a solution to (2.1),
we need a lemma giving some estimates about integrals. The proof is modeled on the
integrals of L.C. Young.

Lemma 2.3. (a) Suppose g is continuously differentiable and f is continuous. In the

following c1 does not depend on f or g. If f ∈ Cα, g ∈ Cβ , and α + β > 1, then

∣∣∣∫ t

0

fdg
∣∣∣ ≤ c1t

β(t ∨ 1)α‖f‖Cα‖g‖Cβ

and ∣∣∣∫ t

s

fdg
∣∣∣ ≤ c1|t− s|β(|t− s| ∨ 1)α‖f‖Cα‖g‖Cβ .

If δ ∈ (0, 1) is such that (1− δ)α + β > 1, then

∣∣∣∫ t

0

fdg
∣∣∣ ≤ c1t

β(t ∨ 1)(1−δ)α‖f‖δ
∞‖f‖1−δ

Cα ‖g‖Cβ .

(b) Let Hs,Ks be continuous processes and p, p′, ζ, ζ ′ > 1 such that

Hp,ζ
t (H) < ∞, Hp′,ζ′

t (K) < ∞,

and (1/p) + (1/p′) > 1. Let t > 0 and

Jn =
2n−1∑
k=0

Hkt/2n(K(k+1)t/2n −Kkt/2n).

Then Jn converges in L1 and the rate of convergence depends only on the quantities

Hp,ζ
t (H),Hp′,ζ′

t (K), p, p′, ζ, ζ ′, and t. Moreover, if Ks has paths that are continuously

differentiable, then Jn converges to
∫ t

0
HsdKs.

Proof. Let tk = kt/2n and let In be a Riemann sum approximation to
∫

fdg:

In =
2n−1∑
i=0

f(ti)(g(ti+1)− g(ti)).
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Since f is continuous and g is continuously differentiable, In →
∫ t

0
fdg as n →∞. Now

In+1 − In =
∑

i even

[f(ti+1)− f(ti)][g(ti+2)− g(ti+1)].

Using the Cauchy-Schwarz inequality,

|In+1 − In| ≤
( ∑

i

|f(ti+1)− f(ti)|2
)1/2( ∑

i

|g(ti+1)− g(ti)|2
)1/2

(2.7)

≤ (2n(t2−n)2α)1/2‖f‖Cα(2n(t2−n)2β)1/2‖g‖Cβ

≤ tα+β2−(α+β−1)n‖f‖Cα‖g‖Cβ .

We also have
|I0| ≤ ‖f‖Cα |g(t2n)− g(t0)| ≤ ‖f‖Cα‖g‖Cβ tβ .

Since α + β > 1, summing over n from 0 to N shows

|IN | ≤ c2t
β(t ∨ 1)α‖f‖Cα‖g‖Cβ ,

with c2 independent of N . Letting N tend to infinity proves the first inequality in (a) and
the second is almost identical. For the third inequality in (a), observe that from (2.7),

|In+1 − In| ≤ (2‖f‖∞)δ
( ∑

i

|f(ti+1)− f(ti)|2−2δ
)1/2( ∑

i

|g(ti+1)− g(ti)|2
)1/2

≤ (2‖f‖∞)δ(2n(t2−n)(2−2δ)α)1/2‖f‖1−δ
Cα (2n(t2−n)2β)1/2‖g‖Cβ

≤ (2‖f‖∞)δt(1−δ)α+β2−((1−δ)α+β−1)n‖f‖1−δ
Cα ‖g‖Cβ .

Since (1− δ)α + β > 1, summing over n from 0 to N shows

|IN | ≤ c2t
β(t ∨ 1)(1−δ)α‖f‖δ

∞‖f‖1−δ
Cα ‖g‖Cβ ,

Letting N →∞ proves the last inequality in (a).
We turn to (b). Again let tk = kt/2n. As above,

Jn+1 − Jn =
∑

k even

[Htk+1 −Htk
][Ktk+2 −Ktk+1 ].

Using Hölder’s inequality,

E |Jn+1 − Jn| ≤
∑

k

(E |Htk+1 −Htk
|p)1/p(E |Ktk+2 −Ktk+1 |p

′
)1/p′

≤ c3

∑
(t/2n)ζ/p(t/2n)ζ′/p′

≤ c42n2−n((1/p)+(1/p′)),
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which is summable in n since (1/p)+(1/p′) > 1. The main assertion of (b) is now immediate.
Clearly if Ks has paths that are continuously differentiable, then Jn is a Riemann sum
approximation of

∫ t

0
HsdKs and so converges to the integral.

We need the following. Suppose Hn is a sequence of C2 functions that converges to
B uniformly on R with supn ‖Hn‖Cγ < ∞ and hn = H ′

n. Let Gn ∈ C2 be defined by

G′′
n(y) =

2hn

(s′)2
◦ σ(y), G′

n(0) = σ′(0), Gn(0) = σ(0). (2.8)

Lemma 2.4. G′
n → σ′ uniformly on bounded intervals.

Proof. We have
G′

n(y) =
∫ y

0

2hn

(s′)2
◦ σ + σ′(0).

Let sn(x) =
∫ x

0
e−2Hn(s)ds. So hn = −s′′n/2s′n. Let σn = s−1

n . Note sn ◦ σn(x) = x, hence
(s′n ◦ σn)σ′n = 1, or σ′n = 1/(s′n ◦ σn). Differentiating,

σ′′n = − 1
(s′n ◦ σn)2

(s′′n ◦ σn)σ′n = − s′′n
(s′n)3

◦ σn.

Therefore ∫ y

0

2hn

(s′n)2
◦ σn + σ′n(0) = σ′n(y).

What we need to do is to show that the left hand side and G′
n do not differ by much.

By a change of variables,

G′
n(y) =

∫ σ(y)

σ(0)

2hn

s′
+ σ′(0), σ′n(y) =

∫ σn(y)

σn(0)

2hn

s′n
+ σ′n(0). (2.9)

Recall σ(0) = σn(0) = 0 by the definitions of s and sn and that σ′n(0) → σ′(0) as n →∞.
We first get a bound on ∣∣∣∫ z

0

[ 1
s′
− 1

s′n

]
dHn

∣∣∣.
Because Hn converges to B uniformly on R with supn ‖Hn‖Cγ < ∞, then 1/s′n converges
to 1/s′ uniformly on R with supn ‖1/s′n‖Cγ < ∞. The Hn are bounded in Cγ norm and
γ > 1

2 , so by Lemma 2.3(a), the expression above is bounded by

c1|z|γ(|z| ∨ 1)(1−δ)γ‖(1/s′)− (1/s′n)‖δ
∞‖(1/s′)− (1/s′n)‖1−δ

Cγ ‖Hn‖Cγ

for some δ ∈ (0, 1). This tends to 0 as n →∞. Similarly we bound the difference between∫ σ(y)

0
and

∫ σn(y)

0
. Combining proves the lemma.
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Theorem 2.5. If p > 2/(1 + γ) and ζ = p(1 + γ)/2, then the Xt constructed in (2.3) is a

(p, ζ)-solution to (2.1).

Proof. Suppose we have a sequence Hn of C2 functions converging to B uniformly with
supn ‖Hn‖Cγ < ∞. Define hn = H ′

n and define Gn as in (2.8). Since G′
n → σ′ by Lemma

2.4, then Gn → σ and G′
nã → a ◦ σ. Since Gn ∈ C2, then by Itô’s formula,

Gn(Yt)−Gn(Y0) =
∫ t

0

G′
n(Ys)ã(Ys)dWs + 1

2

∫ t

0

G′′
n(Ys)ã2(Ys)ds.

The left hand side converges to σ(Yt) − σ(Y0) = Xt − X0. The stochastic integral term
converges to

∫ t

0
a ◦ σ(Ys)dWs =

∫ t

0
a(Xs)dWs. Therefore the right-hand term, An

t , which is∫ t

0
(hna2) ◦ σ(Ys)ds =

∫ t

0
hn(Xs)a2(Xs)ds, must converge in probability to

Xt −X0 −
∫ t

0

a(Xs)dWs = At.

It remains to bound Hp,ζ
t (An). As in (2.5) and (2.6),

|An
t −An

s | ≤ c1|Yt − Ys|1+γ +
∣∣∣∫ t

s

[G′
n(Ys)−G′

n(Yr)]dYr

∣∣∣.
By the Burkholder-Davis-Gundy inequalities,

E |An
t −An

s |p ≤ c2E
( ∫ t

s

ã2(Yr)dr
)p(1+γ)/2

(2.10)

+ c2E
( ∫ t

s

|G′
n(Ys)−G′

n(Yr)|2ã2(Yr)dr
)p/2

.

The first term on the right is bounded by c3|t− s|p(1+γ)/2. By (2.9),

G′
n(y) =

∫ σ(y)

0

2
s′

dHn.

Since σ is Lipschitz, by Lemma 2.3(a)

|G′
n(y)−G′

n(x)| ≤ c4|y − x|γ .

Therefore the last term in (2.10) is bounded by

c5E
( ∫ t

s

|Ys − Yr|2γdr
)p/2

≤ c5E ( sup
u∈[s,t]

|Ys − Yu|2γ)p/2|t− s|p/2.

Since Yt is a martingale, by the Burkholder-Davis-Gundy inequalities again, this is less than

c6E
( ∫ t

s

ã2(Yr)dr
)γp/2

|t− s|p/2 ≤ c7|t− s|p(1+γ)/2.

Substituting in (2.10),
E |An

t −An
s |p ≤ c8|t− s|p(1+γ)/2.

It remains to prove uniqueness.
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Theorem 2.6. Suppose p, p′ ∈ (2/(1 + γ), 2/(2− γ)) and ζ, ζ ′ > 1. Suppose X is a (p, ζ)-
solution to (2.1) and X ′ is a (p′, ζ ′)-solution to (2.1). Then Xt = X ′

t for all t almost surely.

Proof. Let Bm → B uniformly on R with ‖Bm‖Cγ < ∞, and let s, σ, sm, σm be defined
in terms of B and Bm analogously to the above. Let Xt be a (p, ζ)-solution of (2.1). Let
Y m

t = sm(Xt) and Yt = s(Xt). Since sm → s, Y m
t converges to Yt. By Itô’s formula for

Dirichlet processes ([7]),

dY m
t = s′ma(Xt)dWt + s′m(Xt)dAt + 1

2 (s′′ma2)(Xt)dt. (2.11)

Suppose we show that

J(m) =
∫ t

0

s′m(Xt)dAt + 1
2

∫ t

0

(s′′ma2)(Xt)dt → 0. (2.12)

The stochastic integral term in (2.11) is
∫ t

0
(s′ma)(σm(Y m

s ))dWs and converges to∫ t

0
(s′a)(σ(Ys))dWs. So if we show (2.12), then Yt solves dYt = (s′a)(σ(Yt))dWt. Since the

solution to this equation is unique, Yt = s(Xt), and s is one-to-one, then the paths of Xt

are determined by Xt = σ(Yt). Similarly X ′
t = σ(Yt), which would prove uniqueness. So we

must show (2.12).
Let Mt =

∫ t

0
a(Xt)dWt. Using the definition of a (p, ζ)-solution and Fatou’s lemma,

E |At −As|p ≤ c1|t− s|ζ .

Since p < 2/(2− γ), we can choose τ > 1 such that (γ/2τ) + (1/p) > 1. We estimate

|s′m(Xt)− s′m(Xs)|2τ/γ ≤ ‖s′m‖
2τ/γ
Cγ [|Xt −Xs| ∧ 1]2τ

≤ c2‖s′m‖
2τ/γ
Cγ {[|Mt −Ms| ∧ 1]2τ + [|At −As| ∧ 1]2τ}

≤ c2‖s′m‖
2τ/γ
Cγ {|Mt −Ms|2τ + |At −As|p}

≤ c3‖s′m‖
2τ/γ
Cγ (|t− s|τ + |t− s|ζ),

using the Burkholder-Davis-Gundy inequalities to bound E |Mt − Ms|2τ . So if let Ht =
s′m(Xt), we have shown that H2τ/γ,ζ∧τ

t (H) < ∞.
Note that

1
2 (s′′ma2)(Xt)dt = −(s′mbm)(Xt)a2(Xt)dt = −s′m(Xt)dAm

t ,

where Am
t =

∫ t

0
(bma2)(Xt)dt. Let ε > 0. Recalling that (γ/2τ) + (1/p) > 1, Lemma 2.3(b)

tells us that there exists an n0 independent of m such that if n ≥ n0, then

P
(∣∣∣∫ t

0

s′m(Xs)dAm
s −

2n−1∑
k=0

s′m(Xkt/2n)(Am
(k+1)t/2n −Am

kt/2n)
∣∣∣ > ε

)
< ε.

11



with n0 independent of m. The proof of [7] shows that
∫ t

0
s′m(Xt)dAt is the limit in proba-

bility of
∑2n−1

k=0 s′m(Xkt/2n)(Am
(k+1)t/2n −Am

kt/2n) as n →∞. Using Lemma 2.3(b) again and
taking n0 larger if necessary, if n ≥ n0,

P
(∣∣∣∫ t

0

s′m(Xs)dAs −
2n−1∑
k=0

s′m(Xkt/2n)(A(k+1)t/2n −Akt/2n)
∣∣∣ > ε

)
< ε.

Therefore, except for a set of probability at most 2ε, we have

|J(m)| ≤ 2ε +
2n−1∑
k=0

|(Am
(k+1)t/2n −Am

kt/2n)− (A(k+1)t/2n −Akt/2n)|

for all m provided we pick n ≥ n0. However (Am
(k+1)t/2n −Am

kt/2n) → (A(k+1)t/2n −Akt/2n)
as m →∞, and since ε is arbitrary, lim supm |J(m)| = 0 as required.

Remark 2.7. Suppose instead of (1.2) we consider the SDE

dXt = a(Xt)dWt + b(Xt)dt, (2.13)

where a ∈ C1/2 is bounded above and bounded below away from 0 and b is the distributional
derivative of a function B ∈ Cγ for some γ > 1

2 . Let

D(x) =
∫ x

0

1
a(t)2

dBt, .

where the integral is defined in the sense of L.C. Young (cf. the proof of Lemma 2.3(a)). By
Lemma 2.3(a), D is locally a Cγ function, and (2.13) can be rewritten

dXt = a(Xt)dWt + (a2d)(Xt)dt,

where d is the distributional derivative of D. Thus our results provide an interpretation of
(2.13) as well as of (1.2).

3. Divergence form operators.
In this section we will give conditions for pathwise existence and uniqueness for

Markov processes corresponding to divergence form operators.
Let L be a divergence form operator on R:

L =
1
2

d

dx

(
a2 d

dx

)
, (3.1)

where a is a measurable function on R and suppose there is a constant λ > 1 such that

0 < 1/λ ≤ a(x) ≤ λ < ∞ for a.e. x ∈ R. (3.2)

12



The operator L gives rise to a Dirichlet form (E ,W 1,2(R)) on L2(R, dx), where

E(f, g) = 1
2

∫
R

f ′(x)g′(x)a2(x)dx. (3.3)

A Markov process X is said to be associated with (E ,W 1,2(R)) on L2(R, dx) if its transition
semigroup Pt is symmetric in L2(R, dx),

W 1,2(R) = {f ∈ L2(dx) : lim
t→0

1
t

∫
R

f(x)(f(x)− Ptf(x)) dx < ∞},

and for f, g ∈ W 1,2(R)

lim
t→0

1
t

∫
R

g(x)(f(x)− Ptf(x)) dx = E(f, g).

It is well known that there is a continuous conservative Feller process (X, Px, x ∈ R)
associated with (E ,W 1,2(R)) on L2(R) (cf. Example 4.5.2 of [9]). In addition, since 1/λ ≤
a(x) ≤ λ, the capacity induced by X is equivalent to the capacity induced by Brownian
motion on R. Therefore each point on R is non-polar for X. (See Example 4.5.1 of [9].) In
what follows we will use Xx

t to denote the process X under Px such that Xx
0 = x. Such a

process is unique in distribution in the following sense. If there is another symmetric right
continuous strong Markov process Z associated with the Dirichlet form (E ,W 1,2(R)), then
{Zx

t , t ≥ 0} has the same law as {Xx
t , t ≥ 0} for every x ∈ R (cf. Theorem 4.2.7 of [9]). A

process Z is said to be a diffusion if it is a continuous strong Markov process.
By applying Fukushima’s decomposition to the function f(x) = x, which is locally

in W 1,2(R), the following decomposition

Xt = X0 +
∫ t

0

a(Xs)dWs + Nt, t ≥ 0, (3.4)

holds. Here W is a martingale additive functional of X with W0 = 0 and 〈W 〉t = t (so Wt

is a Brownian motion under Px for every x ∈ R) and Nt is a continuous additive functional
of X that locally has zero energy under the measure

∫
R Px(·)dx with N0 = 0. Such a

decomposition is unique (cf. Theorems 5.5.1 and 5.5.2 in [9]). In fact (3.4) characterizes the
symmetric diffusion associated with the Dirichlet form (E ,W 1,2(R)), or equivalently, having
L as its infinitesimal generator.

Theorem 3.1. Suppose that Z is a diffusion on R whose transition semigroup is symmet-

ric with respect to Lebesgue measure on R. If Z satisfies (3.4), then Z is a continuous

conservative Feller process with infinitesimal generator L given by (3.1).

Proof. Since Z is a symmetric diffusion on R, by the Beurling-Deny decomposition (cf.
Theorem 3.2.3 of [9]), its associated Dirichlet form (Ẽ , F̃) on L2(R, dx) has the expression

Ẽ(f, g) =
∫

R
f ′(x)g′(x)µ(dx),

13



where µ is a positive Radon measure. By Fukushima’s decomposition,

Zt = Z0 + Mt + Ñt, t ≥ 0,

where Mt is a continuous local martingale additive functional of Z whose square bracket
〈M〉 has µ as its Revuz measure. and Ñt is a continuous additive functional of Z locally of
zero energy. By the uniqueness of Fukushima’s decomposition, we have Mt =

∫ t

0
a(Zs)dWs

for some Brownian motion Wt, so 〈M〉t =
∫ t

0
a2(Zs)ds. Thus the Revuz measure µ(dx) is

a2(x)dx. This implies (Ẽ , F̃) = (E ,W 1,2(R)) and so L is the infinitesimal generator of Z.

The next result says the process associated with the Dirichlet form (E ,W 1,2(R)) is
continuous with respect to the diffusion coefficient a(x).

Theorem 3.2. Suppose that an(x) and a(x) are measurable functions on R satisfying (3.2)

and limn→∞ an = a almost everywhere on R. Denote by Xn and X the symmetric diffusion

processes associated with the operators Ln = 1
2

d
dx

(
a2

n
d
dx

)
and L = 1

2
d
dx

(
a2 d

dx

)
, respectively.

Let Px
n and Px be the laws of Xn with Xn

0 = x and X with X0 = x, respectively. Then

for every x ∈ R, Px
n converges weakly to Px on the space C([0,∞), R) equipped with the

topology of uniform convergence on compact intervals.

Proof. It is known (see Lyons and Zhang [14]) that for any smooth function φ ≥ 0 with
compact support on R, the measure

∫
R φ(x)Px

n(·)dx converges weakly to
∫

R φ(x)Px(·)dx on
C([0,∞), R). The theorem now follows by the same argument as that in Burdzy and Chen
[2], since by Aronson’s estimate, the density function pn

t (x, y) for Xn
x has a Gaussian upper

bound independent of n (cf. [17]).

A natural and open question is: given a Brownian motion W , can one find a sym-
metric diffusion associated with the Dirichlet form (E ,W 1,2(R)) having the decomposition
(3.4)? We call such a diffusion, if it exists, a strong solution to the SDE (3.4). In the fol-
lowing we will establish strong existence and pathwise uniqueness for the diffusion X under
certain conditions on a, as well as some non-uniqueness results. We will also give necessary
and sufficient conditions for the diffusion X to be a semimartingale.

A nonnegative increasing function ρ on R+ is called moderate if there is a constant
γ > 1 such that ρ(2x) ≤ γ ρ(x) for all x > 0. The functions ρ(x) = xα, 0 < α < ∞ are
examples of such functions.

In the next two theorems, in addition to (3.2) we assume that |a(x)−a(y)| ≤ ρ(|x−y|)
where ρ is an increasing function that satisfies

∫
0+

ρ−2(x)dx = ∞ and that xρ2(
√

x) is a
moderate increasing convex function on R+. (The functions ρ(x) = xα, 1/2 ≤ α < ∞ have
this property.)
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Theorem 3.3. Let L be the divergence form operator in (3.1) with coefficient a satisfying

the above condition. Given a Brownian motion Wt on R, there is a continuous conservative

Feller process X associated with L that is adapted to the filtration of Wt and which has the

decomposition

Xt = X0 +
∫ t

0

a(Xs)dWs + Nt, t ≥ 0, (3.5)

where Nt has zero energy under Px for each x ∈ R.

Proof. Let an(x) be smooth functions such that 1/λ ≤ an(x) ≤ λ and limn→∞ an(x) =
a(x) uniformly in x on compact intervals. Denote by Xn the symmetric diffusion process
associated with the operator Ln = 1

2
d
dx (a2

n
d
dx ) that is driven by the Brownian motion Wt,

that is,
dXn

t = an(Xn
t )dWt + (ana′n)(Xt)dt. (3.6)

Let sn(x) =
∫ x

0
a−2

n (t)dt. Then Y n
t = sn(Xn

t ) is the unique strong solution to the SDE

dY n
t =

1
an ◦ s−1

n (Y n
t )

dWt (3.7)

with Y n
0 = s(Xn

0 ). We will use Xn,x and Y n,y to denote the solutions to (3.6) and (3.7)
with Xn,x

0 = x and Y n,y
0 = y, respectively. Define s(x) =

∫ x

0
a−2(t)dt. For each y ∈ R, let

Y y be the unique solution to

dY y
t =

1
a ◦ s−1(Yt)

dWt with Y y
0 = y. (3.8)

That (3.8) has a strong solution and that the solution is pathwise unique is due to Theorem
1 of Yamada-Watanabe [20], since (1/a) ◦ s−1 satisfies the Yamada-Watanabe condition.
Since an ◦ s−1

n and a ◦ s−1
n are continuous and an ◦ s−1

n converges to a ◦ s−1
n on compact

intervals, by Kaneko and Nakao [11], for every compact interval K ⊂ R and finite T > 0,

lim
n→∞

sup
y∈K

E
[

max
0≤t≤T

∣∣∣Y n,y
t − Y y

t

∣∣∣2] = 0.

So there is a subsequence kn such that

lim
n→∞

sup
y∈K

max
0≤t≤T

∣∣∣Y kn,y
t − Y y

t

∣∣∣ = 0 a.s. (3.9)

Define Xx = s−1(Y s(x)). Then on every compact interval K and T > 0,

lim
n→∞

sup
x∈K

max
0≤t≤T

∣∣∣Xkn,x
t −Xx

t

∣∣∣ = 0 a.s. (3.10)
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Now let X̃ be the symmetric diffusion associated with the Dirichlet form (E ,W 1,2(R)) on
L2(R). Since an is uniformly elliptic and an → a as n → ∞, by Theorem 3.2 X and X̃

have the same distribution whenever X0 and X̃0 have the same distribution. Hence X is a
symmetric diffusion associated with the Dirichlet form (E ,W 1,2(R) on L2(R). Clearly X is
adapted to the filtration of the prescribed Brownian motion Wt.

Let σ denote the inverse of s. We now show that

Nt = Xt −X0 −
∫ t

0

a(Xs)dWs = σ(Yt)− σ(Y0)−
∫ t

0

σ′(Ys)dYs

has zero energy under Px for any t > 0 and x ∈ R. Note that σ is in C1 and σ′ has modulus
of continuity function c1ρ. By the mean value theorem,

σ(y)− σ(x) = σ′(x)(y − x) +
(
σ′(θx + (1− θ)y)− σ′(x)

)
(y − x)

for some θ ∈ [0, 1], and therefore∣∣∣σ(y)− σ(x)− σ′(x)(y − x)
∣∣∣ ≤ c1ρ(|y − x|)|y − x|. (3.11)

Thus for Πt = {t0, t1, . . . , tn} a partition of [0, t] with mesh |Πt| = max1≤k≤n |tk − tk−1|, by
(3.11) and the Burkholder-Davis-Gundy equality (cf. Theorem 10.36 of He-Wang-Yan [10])
,

E x
[ n∑

k=1

(Ntk
−Ntk−1)

2
]

=
n∑

k=1

E x
(
σ(Ytk

)− σ(Ytk−1)−
∫ tk

tk−1

σ′(Ys)dYs

)2

≤ 2
n∑

k=1

(
E x

( ∫ tk

tk−1

(
σ′(Ys)− σ′(Ytk−1)

)
dYs

)2

+ c2E x
(
ρ2(|Ytk

− Ytk−1 |)|Ytk
− Ytk−1 |2

))
≤ c3

n∑
k=1

(
E x

( ∫ tk

tk−1

(
σ′(Ys)− σ′(Ytk−1)

))2

ds

+ ρ2
(√

E x(Ytk
− Ytk−1)2

)
E x(Ytk

− Ytk−1)
2
)

≤ c4 E x
[ n∑

k=1

∫ tk

tk−1

(
σ′(Ys)− σ′(Ytk−1)

)2

ds
]

+ c4 t ρ2
(
c5

√
|Πi|

)
.
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Therefore

lim
|Πt|→0

E x
[ n∑

k=1

(Ntk
−Ntk−1)

2
]

= 0.

The following is a pathwise uniqueness result for the SDE (3.5).

Theorem 3.4. Assume the conditions of Theorem 3.3 hold and let X be a strong solution

for the SDE (3.5). Suppose that Zx is a continuous process on a filtered probability space

(Ω,F , {Ft}t≥0, P) on which Wt is an {Ft}t≥0-Brownian motion. If Zx satisfies equation

(3.5) and has the same distribution as that of Xx, then

P(Xx
t 6= Zx

t for some t ≥ 0) = 0.

Proof. Let s(x) =
∫ x

0
a−2(t)dt. By a similar argument as that in the proof of Theorem 3.3,

we see that

s(Zx
t )− s(x)−

∫ t

0

s′(Zx
s )a(Zx

s )dWs

is a process of zero energy. On the other hand, since {s(Zx
t ), t ≥ 0} has the same distribution

as {s(Xx
t ), t ≥ 0} and the latter is a martingale, {s(Zx

t ), t ≥ 0} is a martingale as well.
Therefore,

s(Zx
t ) = s(x) +

∫ t

0

s′(Zx
s )a(Zx

s )dWs = s(x) +
∫ t

0

1
a(Zx

s )
dWs, t ≥ 0.

Thus both s(Zx
t ) and s(Xx

t ) solve the SDE (3.8) with the same initial value s(x). By the
pathwise uniqueness for the SDE (3.8) (see Theorem 1 of [20]),

P(s(Xx
t ) 6= s(Zx

t ) for some t ≥ 0) = 0

and therefore
P(Xx

t 6= Zx
t for some t ≥ 0) = 0.

Remark 3.5. When a ∈ Cγ with γ > 1/2 and a is bounded above and bounded below
away from 0, the unique solution in Theorems 4.3 and 4.4 coincides with the unique solution
in Theorems 2.5 and 2.6 with B = 1

2a2, as they are all given by Xt = s−1(Yt) where Yt

satisfies (2.2).
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Theorem 3.6. Let (X, Px, x ∈ R) be a continuous conservative Feller process with in-

finitesimal generator L given by (3.1). Then the following are equivalent.

(i) X is a semimartingale under Px for some x ∈ R,

(ii) X is a semimartingale under Px for all x ∈ R,

(iii) the distributional derivative of the function a(x) is a signed Radon measure.

If the distributional derivative of the function a(x) is a signed Radon measure a′(dx), then

X has the representation

Xt = X0 +
∫ t

0

a(Xs)dWs +
∫

R
a−1(x)Lx

t (X) a′(dx), t ≥ 0. (3.12)

Here W is a Brownian motion and Lx
t (X) is the local time for the semimartingale X at level

x, given by (3.2).

Proof. Let

A = {x ∈ R : Px(s → Ns is a process of finite variation) = 1}.

Note that since for s, t > 0, Ns ◦ θt = Ns+t − Nt, where θt is the shift operator for the
Markov process X, we have Px(Xt ∈ A) = 1 for x ∈ A. In other words, Pt1Ac = 0 on A.
Since the process X is irreducible, either A or Ac has zero Lebesgue measure. Note that X

has continuous transition density functions (in fact, they are Hölder continuous by Nash’
well-known result), either Pt1A ≡ 0 on R for all t > 0 or Pt1A ≡ 1 on R for all t > 0. Since
x ∈ A if and only if limt↓0 Pt1A(x) = 1, we have either A = ∅ or A = R. This shows that
(i) and (ii) are equivalent.

Since each point of R is non-polar for X, a smooth measure in the sense of [9] is a
Radon measure (see Example 4.5.1 of [9]). By Theorem 3.3, the decomposition (3.5) holds.
Note that (3.5) is the Fukushima decomposition for f(X), where f(x) = x is locally in
W 1,2(R), and that

E(x, v) = 1
2

∫
R

a2(x)v′(x)dx

for v ∈ C∞
c (R). Thus by Theorem 44444 in Fukushima-Oshima-Takeda [9], X is a semi-

martingale under Px for every x ∈ R if and only if the distributional derivative of the
function a2 is a signed Radon measure. The latter is equivalent to the distributional deriva-
tive of the function a(x) being a signed Radon measure a′(dx). In this case N in (3.5) is an
additive functional of X having bounded variation whose Revuz measure is a(x)a′(dx).

Let Lx
t (X) be the positive continuous additive functional of X associated with the

measure a2(x)δ{x}, where δ{x} is unit mass concentrated at x (see Theorem 5.1.3 of [9]).
Given a positive Radon measure ν, it follows from Theorem 5.1.3 of [9] that the positive
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continuous additive functional of X with Revuz measure a2(x)ν(dx) is
∫

R Lx
t (X)ν(dx). On

the other hand, it is known that for a Borel measurable function f ≥ 0,
∫ t

0
f(Xs)a2(Xs)ds is

a positive continuous additive functional of X having Revuz measure ν(dx) = f(x)a2(x)dx.
Therefore for any Borel measurable function f ≥ 0,∫

R
f(x)Lx

t (X) dx =
∫ t

0

f(Xs)a2(Xs)ds =
∫ t

0

f(Xs)d〈X〉s.

This shows that t → Lx
t (X) is the local time of X at level x (cf. [16, Corollary VI.1.6]).

Now assume that the distributional derivative of the function a(x) is a signed Radon
measure a′(dx). As we noted above, N in (3.5) is an additive functional of X having bounded
variation whose (signed) Revuz measure is a(x)a′(dx) and so

Nt =
∫

R
a−1(x)Lx

t (X) a′(dx), t ≥ 0.

This completes the proof.

In the following, we show that the results in Theorems 3.3 and 3.4 above are nearly
optimal, by using a result due to Barlow. Let X be a conservative diffusion process associated
with the differential operator L in (3.1).

Theorem 3.7. Suppose that a is uniformly bounded away from zero and bounded above

and let α and β be constants with α ∈ (0, 1
2 ) and α ≤ β ≤ α + min{ α

2+α , α−2α2

1+2α }. Suppose

on an interval [x0, y0] there are positive constants c1, c2 and c3 so that

|a(x)− a(y)| ≤ c1|x− y|α for x, y ∈ [x0, y0]

and for all x < y in [x0, y0], there exist x1, y1 with x < x1 < y1 < y such that |x1 − y1| ≥
c2|x−y| and |a(x1)−a(y1)| > c3|x1−y1|β . Then for x ∈ [x0, y0], there is no strong solution

nor pathwise uniqueness to the equation

Zt = x +
∫ t

0

a(Zs)dWs + Nt and Z has the same distribution as Xx, (3.13)

where Nt is a continuous process having zero energy.

Concrete examples of functions a(s) satisfying the condition of Theorem 3.6 can be found
in Barlow [1].

Proof. Suppose we are given a Brownian motion Wt. Suppose that (3.14) has a strong
solution Z. Define s(x) =

∫ x

0
a−2(t)dt. Since a(x) is bounded away from zero and infinity,
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x → s(x) is a one-to-one bi-Lipschitz map from R into R. Let Yt = s(Zt). Then Yt is a
strong solution to the following one dimensional SDE:

Yt = s(x) +
∫ t

0

ã(Ys)dWs, (3.14)

where ã(y) = 1/a(s−1(y)). Note that ã satisfies the same hypotheses as does a, but with
x0, y0 being replaced by s(x0) and s(y0), respectively. Thus by Theorem 1.3 of Barlow [1],
the SDE (3.15) does not have pathwise uniqueness. Since weak uniqueness holds for (3.15),
by a result of Gikhman and Skorokhod (see Theorem 1.2 in [1]), (3.15) can not have a strong
solution. This is a contradiction. Therefore equation (3.14) does not have a strong solution.

The same argument shows that solutions to (3.14) do not have the pathwise unique-
ness property either.

4. Stratonovich SDEs.

In this section we consider the case where b = 1
2a′a, so that formally (1.1) becomes

the Stratonovich SDE (1.4). It is well known that when a is C2, the SDE (1.4) has a unique
strong solution. We will show in this section that if a is bounded and continuous, then
(1.4) has a strong solution. Of course in this case, we need to give an interpretation to this
Stratonovich SDE as a is not differentiable.

The following result is a special case of the generalized Ito’s formula in [8], where the
same formula is proved for continuous f with f ′ ∈ L2. Here we give a simple proof for C1

functions f .

Theorem 4.1. For a C1 function f ,

f(Wt) = f(W0) + lim
n→∞

n∑
k=1

∇f(W(k−1)t/n) +∇f(Wkt/n)
2

(Wkt/n −W(k−1)t/n)

The limit is in the sense of convergence in probability with respect to Px for every x ∈ Rn.

Proof. Write Sn(f) =
∑n

k=1(∇f(W(k−1)t/n)+∇f(Wkt/n))(Wkt/n−W(k−1)t/n). As f ∈ C1,
given any ε > 0, there is a g ∈ C2 with |∇(f − g)| < ε everywhere. It is straightforward
that the theorem holds for C2 functions, so if we can show E x(Sn(f − g))2 < Cε2, where C

is a constant independent of f and g, the theorem will follow.
Fix n, and write φ = ∇(f − g), so that |φ| < ε everywhere. Then Sn(f − g) =

X + Y , where X =
∑n

k=1 φ(W(k−1)t/n)(Wkt/n −W(k−1)/n) and Y =
∑n

k=1 φ(Wk)(Wkt/n −
W(k−1)t/n). We write

E x(X2) =
t

n

n∑
k=1

E x(φ(W(k−1)t/n))2 ≤ ε2 t.
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Also

Y 2 =
n∑

k=1

φ(Wkt/n)2(Wkt/n −W(k−1)t/n)2

+ 2
∑

1≤j<k≤n

φ(Wjt/n)φ(Wkt/n)(Wjt/n −W(j−1)t/n)(Wkt/n −W(k−1)/n).

We need the following observation. If Zs is a Brownian bridge tied down to be a at
time 0 and b at time u, then there exists a Brownian motion Bs such that

Zs = a + Bs −
s

u
(Bu − (b− a)).

So
E [Zu − Zs] =

u− s

u
(b− a).

If 1 ≤ j < k ≤ n and we condition on W0,Wjt/n, and Wkt/n, we have two Brownian
bridges, one from time 0 to time jt/n and the other from time jt/n to time kt/n. We then
have

E x((Wjt/n −W(j−1)t/n)(Wkt/n −W(k−1)t/n)
∣∣W0,Wjt/n,Wkt/n)

=
1

j(k − j)
(Wjt/n −W0)(Wkt/n −Wjt/n),

and so
|E x(φ(Wjt/n)φ(Wkt/n)(Wjt/n −W(j−1)t/n)(Wkt/n −W(k−1)t/n))|

=
1

j(k − j)
|E x(φ(Wjt/n)φ(Wkt/n)(Wjt/n −W0)(Wkt/n −Wjt/n))|

≤ ε2

j(k − j)
E x(|Wjt/n −W0| |Wkt/n −Wjt/n|).

By Cauchy-Schwarz, this is less than

2ε2t

n
√

j(k − j)
.

Hence

E x(Y 2) ≤ ε2t +
4ε2t

n

∑
1≤j<k≤n

1√
j(k − j)

≤ Cε2t

as required.

Let us define the Stratonovich integral
∫ t

0
Hs− ◦ dWs as the limit of the Riemann

sums
n∑

k=1

H(k−1)t/n + Hkt/n

2
(Wkt/n −W(k−1)t/n)
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as n →∞, as long as the Riemann sums converge in probability. Then the above theorem
can be rephrased as saying

f(Wt) = f(W0) +
∫ t

0

∇f(Ws) ◦ dWs, t ≥ 0.

Clearly when f is smooth this definition of Stratonovich integral is consistent with
that in the literature. For the one dimensional case, we have a strong existence result.

Theorem 4.2. Suppose a is a positive, bounded continuous function on R. Then the

Stratonovich SDE

dXt = a(Xt) ◦ dWt

has a strong solution. In fact, given a Brownian motion Wt with W0 = 0 and x0 ∈ R, there

is a continuous process Xt = s−1(s(x0) + Wt) that solves

Xt = x0 +
∫ t

0

a(Xs) ◦ dWs, (4.1)

where s(x) =
∫ x

0
1

a(t)dt. This particular solution X = s−1(s(x0) + Wt) is a semimartingale

if and only if the distributional derivative of a is a signed measure a′(dx). In this case, X

has the representation

Xt = x0 +
∫ t

0

a(Xs)dWs +
1
2

∫
R

a−1(x)Lx
t (X) a′(dx), t ≥ 0, (4.2)

where Lx
t (X) is the local time of the semimartingale X at level x.

Proof. Define
s(x) =

∫ x

0

1
a(t)

dt.

s(x) is a C1 function that maps R onto R and so is its inverse σ = s−1. Let Xt =
σ(s(x0) + Wt). It follows from Theorem 4.1 that

Xt = x0 +
∫ t

0

σ′(s(x) + Ws) ◦ dWs = x0 +
∫ t

0

a(Xs) ◦ dWs

By the same argument in proving the equivalence of (i) and (ii) in Theorem 3.6, it
can be shown that Xt = σ(s(x) + Wt) is a semimartingale for some x ∈ R if and only if
Xt = σ(s(x)+Wt) is a semimartingale for all x ∈ R. Thus by Example 5.5.1 in Fukushima-
Oshima-Takeda [9], Xt = σ(s(x0) + Wt) is a semimartingale if and only if the second order
distributional derivative of s−1 is a signed Radon measure, which happens if and only if
the distributional derivative of a is a signed Radon measure. Assume the distributional
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derivative of a is a signed Radon measure a′(dx). Note that σ′(y) = a(σ(y)) and dσ′(y) =
da(σ(y)). By Example 5.5.1 of [9], X has the following representation:

Xt = x +
∫ t

0

a(Xs)dWs + 1
2

∫
R

L
y−s(x)
t (W ) dσ′(dy), t ≥ 0,

where Ly
t (W ) is the local time for Brownian motion W at level y. Note that

L
y−s(x)
t (W ) = lim

ε→0

1
ε

∫ t

0

1[y−s(x),y−s(x)+ε)(Ws)ds.

Ws is between y − s(x) and y − s(x) + ε if and only if Xs = σ(s(x) + Ws is between σ(y)
and σ(y + ε). Therefore

L
y−s(x)
t (W ) = lim

ε→0

1
ε

∫ t

0

1[σ(y),σ(y)+ε)(Xs)ds

= lim
ε→0

1
ε

∫ t

0

1[σ(y),σ(y)+ε)(Xs)a−2(Xs)d〈X〉s

= σ′(y)a−2(σ(y))La(y)
t (X),

where Lz
t (X) = limε→0

1
ε

∫ t

0
1[z,z+ε)(Xs)d〈X〉s is the local time for Xt = a(s(x) + Wt) at

level z. Since σ′(y) = a(σ(y)),

L
y−s(x)
t (W ) =

1
a(σ(y))

L
a(y)
t (X),

and therefore∫
R

L
y−s(x)
t (W ) dσ′(dy) =

∫
R

1
a(σ(y))

L
σ(y)
t (X) da(σ(y)) =

∫
R

a−1(z)Lz
t (X) a′(dz).

This completes the proof of the theorem.

As a′(dx) has no atoms, it can be shown that the local time Lx
t (X) in (4.2) is the

same as the symmetric local time of X. Note also that when a ∈ Cγ with γ > 1/2 and a is
bounded above and bounded below away from 0, the unique solution as defined in Section
2 with B = a2/4 solves the Stratonovich SDE (4.1).

Theorem 4.3. Suppose that a is a positive, bounded continuous function and has a distri-

butional derivative that is a Radon measure a′(dx). Then for any x0 ∈ R, there is a strong

solution Xt to the SDE (4.2) with X0 = x0 and the solution is pathwise unique.

Proof. The existence of a strong solution is already proved in Theorem 4.2 so we only
need to show the pathwise uniqueness. Now suppose (X, W ) is a solution to (4.2) with
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X0 = x0 on a filtered probability space (Ω,F , {Ft}t≥0, P) such that Xt is Ft-measurable
and W is an {Ft}t≥0-Brownian motion. Define s(x) =

∫ x

0
1/a(t)dt. Then s′(x) = 1/a(x)

and the distributional derivative of s′(x) is a signed measure s′′(dx) = −a−2(x)a′(dx). By
the generalized Itô formula and the fact that local time process t → Lx

t (X) increases only
when Xt = x,

s(Xt) = s(x0) +
∫ t

0

s′(Xs)dXs + 1
2

∫ t

0

Lx
t (X)s′′(dx)

= s(x0) + Wt + 1
2

∫
R

a−1(x)a−1(x)Lx
t (X)a′(dx)− 1

2

∫
R

a−2(x)Lx
t (X)a′(dx)

= s(x0) + Wt.

Thus the paths of s(Xt) are uniquely determined, and hence so are those of X.

An interesting and natural question is whether pathwise uniqueness holds for the
SDE (4.1) when a is only assumed to be positive and continuous. We will present an answer
to this question in next question.

5. Another view of Stratonovich SDEs.
Assume in this section that a(x) is a measurable function on R that is bounded above

and bounded below away from zero. Formally, the Stratonovich SDE

dXt = a(Xt) ◦ dWt, X0 = x0, (5.1)

has generator

L =
a(x)2

2
d2

dx2
+ 1

2a(x)a′(x)
d

dx
=

a(x)
2

d

dx

(
a(x)

d

dx

)
.

So L is the infinitesimal generator corresponding to the regular Dirichlet form (E ,F) on
L2(R, a−1dx), where F = W 1,2(R) and

E(f, g) =
1
2

∫
R

a(x)f ′(x)g′(x)dx for f, g ∈ F .

It is well known (cf. [9]) that there is a diffusion process X associated with (E ,F) with
symmetrizing measure a(x)−1dx.

Theorem 5.1. Given a Brownian motion Wt, there is a continuous conservative Feller

process X associated with L that is adapted to the filtration of Wt. Furthermore if a is

continuous, then for each x ∈ R Px-a.s.,

Xt − x = lim
n→∞

n∑
k=1

a(X(k−1)t/n) + a(Xkt/n)
2

(Wkt/n −W(k−1)t/n). (5.2)
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Proof. Let

s(x) =
∫ x

0

1
a(t)

dt. (5.3)

Then s is L-harmonic; in fact, E(s, f) = 0 for f ∈ C1
c (R). Suppose Y is a diffusion process

associated with (E ,F); by Fukushima’s decomposition, s(Yt) = s(Y0)+Ms
t with 〈Ms〉t = t.

So s(Yt) is a Brownian motion starting from s(Y0).
Now suppose a Brownian motion Wt is given. Let σ denote the inverse function of

s(x). Define
Xt = σ(s(X0) + Wt). (5.4)

Then Xt is a continuous conservative Feller process X associated with L. Since Wt =
s(Xt)− s(X0), by Lyons and Zheng’s forward and backward martingale decomposition (see
[9]) or by the generalized Ito’s formula in [8], we have (5.2).

Note that the above X is a Dirichlet process. Its associated Dirichlet form is the
(E ,W 1,2(R)) given just below (5.1) and satisfies Fukushima’s decomposition

Xt = X0 +
∫ t

0

a(Xs)dWs + Nt, (5.5)

where Nt has zero energy under Px for each x ∈ R.
It is natural to formulate the following definition of solution to the Stratonovich SDE

(5.1).

Definition 5.2. Given a Brownian motion Wt on R, we say Xt is a strong solution to (5.1)

with starting point x0 if

(i) Xt is adapted to the filtration generated by Wt;

(ii) Whenever an is a sequence of C2 functions that converges to a a.e. on R with

λ−1 ≤ an(x) ≤ λ a.e. on R (5.6)

for some λ > 0 and all n ≥ 1, then with probability one sup0≤s≤t |Xn
s −Xs| converges

to zero for each t > 0. Here Xn
t is the unique solution to dXn

t = a(Xn
t ) ◦ dWt with

Xn
0 = x0.

Remark 5.3. Definition 5.2(ii) is equivalent to
(ii′) There is a sequence of C2 functions {an} that converges to a a.e. on R and satisfies

condition (5.6), and with probability one sup0≤s≤t |Xn
s − Xs| converges to zero for

each t > 0. Here Xn
t is the unique solution to dXn

t = a(Xn
t ) ◦ dWt with Xn

0 = x0.

Similarly to the proof of Theorem 3.4, onc can show that
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Theorem 5.4. Let X be defined by (5.3) and (5.4) with X0 = x. Suppose that Zx is

a continuous process on a filtered probability space (Ω,F , {Ft}t≥0, P) on which Wt is an

{Ft}t≥0-Brownian motion. If Zx satisfies equation (5.5) and has the same distribution as

that of Xx, then

P(Xx
t 6= Zx

t for some t ≥ 0) = 0.

Theorem 5.5. Suppose that an(x) is a sequence of C2 functions converging to a(x) a.e.

on R and satisfying condition (5.6). Denote by Xn the unique strong solution to

Xn
t = x0 +

∫ t

0

an(Xn
s ) ◦ dWs

and let X be defined by (5.3) and (5.4) with X0 = x0. Then almost surely

lim
n→∞

sup
0≤s≤t

|Xn
s −Xs| = 0 (5.7)

for every t > 0.

Proof. Define sn(x) =
∫ x

0
1

an(t)dt. We use σn and σ to denote the inverse functions of sn

and s, respectively. Clearly sn → s uniformly on bounded intervals and so σn → σ. We see
from the proof of Theorem 5.1 that Xn

t = σn(sn(x0)+Wt) and as Xt = σ(s(x0)+Wt) (5.7)
follows.

Combining Theorems 5.4 and 5.5 we have

Theorem 5.6. For every x0 ∈ R, there is a strong solution to the Stratonovich SDE (5.1)

and the solution is pathwise unique.

By a proof similar to that of Theorem 4.2, we have

Theorem 5.7. The solution to the Stratonovich SDE (5.1) is a semimartingale if and only

if the distributional derivative of a is a signed Radon measure a′(dx). In this case, X has

the representation

Xt = x0 +
∫ t

0

a(Xs)dWs + 1
2

∫
R

a−1(x)Lx
t (X) a′(dx), t ≥ 0, (5.8)

where Lx
t (X) is the local time of the semimartingale X at level x.
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